
LISA 2.5
A PROFESSIONAL ASSEMBLY LANGUAGE DEVELOPMENT SYSTEM FOR APPLE

COMPUTERS

Introduction
What is LISA
LISA (pronounced LI ZA, not LE SA) is an interactive 6502 assembler for the Apple II. Due
to its structure, code compression, interaction, and built-in features, LISA is easily the
most powerful assembler available for the Apple II. With LISA, machine language
programming becomes almost as easy as BASIC. LISA works with you instead of
working against you. LISA is a symbolic assembler, the programmer does not have to
keep track of addresses as with the built-in ROM mini-assembler. More pseudo opcodes,
Sweet 16 mnemonics (which turns your Apple II into a 16-bit machine), more extended
mnemonics and more commands which allow the flexible use of DOS 3.2.

LISA also works with the new Apple II PLUS as well as with Apple’s Autostart ROM or the
language system. If your Apple II has the Lazer MicroSystems Lower Case +Plus installed,
you may enter and display the entire 96 upper/lower case ASCII character set and all
characters may be entered directly from an unmodified Apple keyboard. Not only that, but
should you desire to incorporate lower case input into your assembly language programs
Lazer Systems has provided a source listing of the "LISA P2.L" routines (used by LISA) for
your convenience.

Requirements
Requirements include at least one drive and 48K bytes of RAM. LISA 2.5 64K requires a
language card for proper operation.

Disk Facilities Provided
LISA uses several disk options. You may save LISA text files to disk as either a text or
"LISA" type file. "LISA" files are much faster and require less space on the disk, but are
incompatible with the rest of the world. Text files may be read in by APPLE Pie or your
BASIC programs but are much slower than the "LISA" type files for simple loading and
saving. In addition a LISA source file on disk may be appended to the existing file in
memory by using the “AP(PEND)" command. During assembly it is possible to "chain"
source files in from the disk using the "ICL" pseudo opcode. This allows the user to
assemble text files which are much larger than the available memory in the Apple II.

Likewise, by using the "DCM" pseudo opcode, it is possible to save generated code on to
the disk, so code files of almost any length may be generated.

How does LISA interface with the Monitor & DOS?
LISA operates under DOS 3.2 for file maintenance and peripheral control. Any DOS
command may be executed directly from LISA's command level. Since PR# & IN# are
DOS commands, PR# & IN# are available for peripheral control. In addition, control-P is
reserved for use with user defined routines. These routines may be printer drivers for use
with I/O devices not utilizing an on-board ROM, or use with device drivers using the game
I/O jack, or any user defined utility such as slow list, entry into BASIC, etc. LISA uses only
standard routines in the Apple Monitor, so LISA will work with both the normal Apple
monitor and the Autostart ROM. LISA modifies pointers in DOS 3.2, therefore, when your
LISA disk is booted the DOS which is loaded into memory should not be used for BASIC,
or TINY PASCAL programs.

LISA saves source files in a special "LISA" format. When you catalog the disk these files
will have filetype of "L". When running under an unmodified DOS these files will look like
binary files, but they cannot be BLOAD'ed or BRUN'ed. LISA is provided on DOS 3.2 but
may be converted to DOS 3.3 using the DOS 3.3 MUFFIN program. 

Program syntax

Important Concepts

1) Source format
2) Label field
3) Mnemonic field

a) Standard mnemonics
b) Extended mnemonics
c) SWEET-16 mnemonics
d) Pseudo opcodes

4) Operand field
5) Comment field

Assembly Language source format
Source statements in LISA are entered in a "free format" fashion. They use the following
format:

 LABEL MNEMONIC OPERAND ;COMMENT

Each member of the source statement is called a "field". There is a LABEL field, a
MNEMONIC field, an OPERAND field, and a COMMENT field.

These fields may or may not be optional depending upon the context of the statement.
These fields must be separated by at least one blank, & interleaving blanks may not
appear inside any of the fields. If an upper case alphabetic character appears in column
one, then that character defines the beginning of the LABEL field. If column one is blank,
then this is a signal to LISA that there will not be a label on the current line. If column
one contains a semicolon (";") or an asterisk ("*"), then the rest of the line will be
considered a comment and will be ignored. The appearance of any other character in
column one constitutes an error and this error will be flagged at edit time (assuming that
you're using LISA's built-in editor).

The LABEL field
The label field contains a one to eight character label whose first character begins in
column one. If you attempt to place a label in any column except column one LISA will
mistake the label for a 6502 mnemonic and will (more than likely) give you a syntax error.
Valid characters in labels are the uppercase alphabetics, numerics, and the two special
characters period (".") and underline ("-"). While LISA 2.5 will accept certain other
characters within a filename, they should be avoided to insure upwards compatibility with
upcoming versions of LISA. Lower case alphabetics will be converted to uppercase when
processing labels, they may be used if convenient.

Labels are terminated with either a blank or a colon. If a blank terminates the label that a
6502 mnemonic must appear after the label. If a colon terminates the line than the
remainder of the line is ignored and the label will appear on the line by itself.

A special type of label, local labels, will be discussed later in this manual.

The MNEMONIC field
This field, delimited by a blank, must contain the three character mnemonic. This may be
any of the valid 6502 mnemonics, Sweet-16 mnemonics, or pseudo-opcodes.

 6502 mnemonics (55):

ADC AND ASL BCC BCS BEQ BIT BMI BNE BPL
BRK BVC BVS CLC CLD CLI CMP CPX CPY DEC
DEX DEY EOR INC INX INY JMP JSR LDA LDX
LDY LSR NOP ORA PHA PHP PLA PLP ROL ROR
RTI RTS SBC SEC SED SEI STA STX STY TAX
TAY TSX TXA TXS TYA

 Extended mnemonics (5):

BTR BFL BGE BLT XOR

 SWEET-16 mnemonics (26):

SET LDR STO LDD STD POP STP ADD SUB PPD
CPR INR DCR RTN BRA BNC BIC BIP BIM BNZ
BM1 BNM BKS RSB BSB BNZ

 Pseudo opcodes (also known as assembler directives) (33):

OBJ ORG EPZ EQU ASC STR HEX LST NLS DCM
ICL END ADR DCI INV BLK DFS PAG PAU BYT
HBY DBY LET TTL NOG GEN PHS DPH .DA .IF
.EL .FI USR

LISA mnemonics may be entered in either uppercase or lowercase, LISA will always
convert the input mnemonic to upper case. A complete description of these appears in the
following sections.

The OPERAND field
The operand field, again delimited by a blank, contains the address expression and any
required addressing mode information.

The COMMENT field
Following the operand field comes the optional comment field. The comment field must
begin with a semicolon (";") and must be separated from the operand field by at least one
blank. The remainder of the line (up to return) will be ignored by LISA. If there is no
operand field (e.g. implied or accumulator addressing mode) then the comment field may
follow the mnemonic field. Comments may not appear on the same line as the "END",
"LST", PAG, PAU and "NLS" pseudo opcodes. As previously mentioned, comments may
appear on line by themselves by placing a semicolon or an asterisk in column one.

Addressing modes

1) Address expressions
2) Immediate addressing mode

a) Standard syntax
b) Low Order Byte Selection
c) High Order Byte Selection
d) Extended Modes

3) Accumulator addressing mode
4) Absolute/Zero page addressing
5) Indexed by X addressing
6) Indexed by Y addressing
7) Relative addressing
8) Implied addressing
9) Indirect, indexed by Y addressing
10) Indexed by X, indirect addressing
11) Indirect addressing
12) Local labels

Address expressions
The operand filed provides two pieces of information to LISA. It provides the addressing
mode, which tells the computer how to get the data, and the address expression which
tells the computer where the data is coming from. An address expression is simply an
integer expression, much like the expressions found in Integer BASIC, whose result is a
sixteen-bit unsigned integer in the range 0-65535.

Version 2.5 supports addition, subtraction, multiplication, division, logical-AND, logical-
OR, logical-exclusive OR, equality, and inequality.

An address expression can be defined in the following terms:
1) An address expression is defined as a "term" optionally followed by an operator

and another address expression.
2) An operator is either "+", "-", "*", "/", "&", "|", “^", "=", or "#".
3) A term is either a label (regular or local), a hex constant, a decimal constant, a

binary constant, a character constant or the special symbol"*".
4) Hex constants may be in the range $0000-$FFFF and must begin with the symbol

"$".
5) Decimal constants may be in the range 0 - 65535 and may begin with the symbol

"!" (the "!" is optional). Note that decimal constants in the range 65536-99999 (i.e.
overflow) will not be detected at edit time or assembly time, please be careful!
Signed decimal constants (i.e. negative decimal values) must begin with the
sequence "!-".

6) Binary constants may be in the range %0000000000000000 - %1111111111111111
and must begin with the special symbol "%".

7) Character constants come in two varieties. If you wish to use the standard ASCII
representation (i.e. high order bit of) simply enter the character enclosed by two
apostrophes (e.g. 'A'). To use the extended ASCII form (i.e. high order bit on)
enclose the character in quotes (e.g. "A").

8) The special symbol "*" can be thought of as a function which returns the
address of the beginning of the current source line.

Address expressions may not contain any interleaving blanks.

Example of Address Expressions:

LBL+$3
HERE-THERE
*+!10
“Z"+$1
$FF
!10
!-936
LABEL/2*X^$FFFF&$10FF|1
LBL-$FF+!10-%1010011

Address expressions are evaluated from RIGHT TO LEFT! This is very similar in operation
to the expression analyzer used by the APL programming language. Parenthesis are not
allowed.

Examples:

 $5+$3 evaluates to $8
 $5+$3-$2 " evaluates to $6
 $5-$3+$2 " evaluates to $0 ($3+$2 = $5 which is subtracted from $5)

In 99% of the cases, the order of evaluation will not make any difference since address
expressions seldom have more than two terms. The only time the right to left evaluation
sequence will make a difference is when the address expression contains more that two
terms and the subtraction operator is used. From this point on, whenever
"<expression>" appears you may substitute any valid address expression. A very special
type of address expression is the “zero page address expression". In a nutshell, a zero
page address expression is one which results in a value less than or equal to $FF and
does not contain any terms greater than $FF.

For example, although $FE+$1 is a valid zero page address expression, $100-$1 is not.
This is because the expression contains a term greater than $FF ($100). Also, if during
evaluation the expression ever evaluates to a value greater than $FF, the expression will
not be a zero page expression. Naturally, if an expression evaluates to a value greater
that $FF, even though its terms are all less than $FF, it will not be a zero page expression.

Multiplication, division, logical-AND, logical-inclusive OR, and logical-exclusive OR,
equality, and inequality operations are also supported in LISA 2.5 address expressions.
The symbols used for these operations are "*", "/", "&", "|", "^", and "#" respectively. Note
that the "|" character is obtained by typing esc-1 and is displayed properly only if the user
has installed a Lazer MicroSystems Lower Case +Plus. The use of the asterisk ("*")
becomes very context dependent. If it is found between two expression, then the
multiplication operation is assumed. If it is found in place of an expression, the current
location counter value will be substituted in its place.

Immediate addressing mode

Immediate data (i.e. a constant) is preceded by a '#' or '/'. Since the 6502 is an eight bit
processor, and address expressions are 16-bits long, there must be some method of
choosing the high order byte or the low order byte.

#: When an address expression is preceded by a "#" this instructs LISA to use the low
order byte of the 16-bit address which follows.
 SYNTAX: #<expression>

Examples:

#LABEL
#$FF
#!6253
#%1011001
#’A'
#"Z"+$1

/: When the address expression is preceded by a "/" this instructs LISA to use the high
order byte of the 16-bit address which follows.

 SYNTAX: /<expression>

Examples:

/LABEL
/$FF
/!6253
/%101001100
/LBL+$4
/$F88F

Note: "/" is one of the exceptions to MOS syntax. MOS uses “#<" instead. We feel the "/"
is easier to type into the system (it saves you having to type two shifted characters).
Another reason for not using the ">" and "<" operators will become evident when
discussing local labels.

In addition to the standard syntax, LISA provides the user with three very convenient
extensions to the immediate addressing mode.

A single apostrophe followed by a single character will tell LISA to use the ASCII code
(high order bit off) for that character as the immediate data. This is identical to
"'<character>' except you do not have to type the "#" and closing apostrophe.

 SYNTAX: '<single character>

The quote can be used in a similar manner to the apostrophe, except the immediate data
used will then be in the extended ASCII format (high order bit on).

 SYNTAX: "<single character>

Examples:
'A same as #’A'

'B same as #’B'
'% same as #’%'
"C same as #”C"
"D same as #”D"
"# same as #"#"

If you're wondering why you would want to use the #"A" version, remember that an
address expression is allowed after the "#". This allows you to construct constants of the
form #"Z"+$1 which is useful on occasion. Address expressions are not allowed after the "
or ' in extended form.

The last extension to the immediate mode concerns hexadecimal constants. Since hex
constants are used much more often than any other data type in the immediate mode, a
special provision has been made for entering them. If the first character of the operand
field is a DECIMAL digit ("0"-"9") then the computer will interpret the following digits as
immediate HEXADECIMAL data. If you need to use a hexadecimal number in the range
$A0-$FF you must precede the hexadecimal number with a decimal zero. This is required
so that LISA will not mistake your hexadecimal number for a label.

Examples:
00 same as #$0
05 same as #$5
10 same as #$10
OFF same as #$FF

WARNING** These special forms of the immediate addressing mode were included to
provide compatibility with an older assembler. Since LISA's introduction, the assembler
using this special syntax has been removed from the marketplace. To help streamline
future versions of LISA these syntax additions will not be present in future versions of
LISA. They are included in LISA 2.5 only for purposes of compatibility with older versions
of LISA.

DON'T USE THESE FORMS IN NEW PROGRAMS YOU WRITE, or someday...........

Accumulator addressing mode
The accumulator addressing mode applies to the following four instructions:

ASL
LSR
ROL
ROR

Standard MOS syntax dictates that for the accumulator addressing mode you must place
an "A" in the operand field. LISA is compatible with the mini-assembler built into the Apple
and as such the "A" in the operand filed is not required.

Examples of the Accumulator Addressing Mode:

ASL A
LABEL ROL

LSR A

ROR

Absolute/Zero page addressing
To use the absolute/zero page addressing mode simply follow the instruction with an
address expression in the operand field. LISA handles zero page addressing
automatically for you (but see EQU/EPZ description).

Examples:
LDA LABEL (Symbolic label)
LDA LABEL+$1 (Label plus offset)
LDA $1 (Non-symbolic zero page)
LDA $800 (Non-symbolic absolute)
ASL LBL (Symbolic label)
ROL %10110 (Non-symbolic zero page)

Indexed by X addressing
LISA supports the standard "indexed by X" syntax. To use this addressing mode, your
operand field should have the form:

 <expression>,X

When LISA encounters an operand of this form, the indexed by X addressing mode will be
used. If it is possible to use the zero page indexed by X addressing mode, LISA will do so.

Note: STY <expression>,X <expression> must be a zero page expression or an assembly
time error will result.

Examples:

LDA LBL,X
LDA LBL+$1,X
LDA $100,X
LDA $1010,X

Indexed by Y addressing
LISA supports the standard "indexed by Y" syntax. To use this addressing mode your
operand should be of the form:

 <expression>,Y

When LISA encounters an operand of this form, the indexed by Y addressing mode will be
used. If it is possible to use the zero page addressing mode (only with LDX & STX) then
the zero page version will be used.

Note: STX <expression>,Y <expression> must be a zero page expression or an assembly
time error will result.

Examples:

LDA LBL,Y
STA LBL+$80,Y
LDX $0,Y

Relative addressing
Relative addressing is used solely by the branch instructions. Relative addressing is
syntactically identical to the absolute/zero page addressing mode.

Examples:

BNE LBL
BCS LBL+$3
BVC *+$5
BMI $900
BEQ LBL-$3

Implied addressing
Several mnemonics do not require any operands. When one of these instructions is used,
simply leave the operand field blank.

Examples:

CLC
SED
PHA
PLP

Indirect, indexed by Y addressing
Indirect, indexed by Y addressing has the following syntax:

(<expression>),Y <expression> must be a zero page expression or an assembly time
error will result.

Examples:

LDA (LBL),Y
LDA (LBL+$2),Y
LDA ($2),Y
LDA (!10+%101),Y

Indexed by X, indirect addressing
The indexed by X, indirect addressing mode has the format:

(<expression>,X) where <expression> must be a zero page expression or an assembly
time error will result.

Examples:

LDA (LBL,X)
ADC (LBL+$3,X)
STA (LABEL-!2,X)
AND ($00,X)

Indirect addressing
The indirect addressing mode can only be used with the JMP instruction. The indirect
addressing mode uses the following syntax:

(<expression>) where <expression> may be any valid 16-bit quantity.

Examples:

JMP (LBL)
JMP (LBL+$3)
JMP ($800)

Local labels

LISA 2.5 supports a special type of label known as the local label. A local label definition
consists of the up-arrow ("^") in column one followed by a digit in the range 0-9.

Examples:
^0 LDA #0
^9 STA LBL
^7 BIT $C010

Local labels' main attribute is that they may be repeated throughout the text file. That
is, the local label '^1' may appear in several places within the text file. To reference a local
label, simply use the greater than sign ('>') or the less than sign ('<') followed by the
digit of the local label you wish to access. If the less than sign is used, then LISA will use
the appropriate local label found while searching backwards in the text file. If the greater
than sign is used then LISA will use the first appropriate local label found searching
forward in the text file.

Examples:

Incrementing a 16-bit value:

INC16 INC ZPGVAR
BNE >1
INC ZPGVAR+1

^1 RTS

A Loop:

LDX #0
^8 LDA #0

STA LBL,X
INX
BNE <8

Local labels may not be equated using the EQU, "=", or EPZ pseudo opcodes. They are
only allowed to appear as a statement label.

Using LISA

Getting LISA up and running

To run LISA simply boot the disk. When LISA is ready to execute a command you will be
greeted with a “!" prompt (the same one used by the mini:-assembler). You can also run
LISA by issuing the DOS command "BRUN MXFLS". If LISA is already in memory, you can
enter LISA by issuing the Apple monitor command "E000G" or control-B. This enters LISA
and clears the text file in memory. If you wish to enter LISA without clearing the existing
text file memory space (a “warm start" operation) use the "E003G" monitor command or
control-C. Note: See warning and extraneous notes for the “warm start” procedure.

The commands

After you successfully enter LISA, the computer will be under the control of the
command interpreter. This is usually referred to as the command level. When you are at
the command level a "!" prompt will be displayed and the computer will be waiting (with a
blinking cursor) for a command. When at the command level you have several
commands available to you. They are:

N(EW)
LO(AD)
SA(VE)
W(RITE)
^D(control-D)
L(IST)
I(NSERT)
D(ELETE)
M(ODIFY)
^P(control-P)
A(SM)
AP(PEND)
LE(NGTH)
BRK
F(IND)

The optional information is enclosed in "()". As an example you only need type "LO" to
perform the "LOAD" command, "I" to execute “INSERT" command, etc.

Explanation of each of the LISA commands

I(NSERT) {line#}

Insert command, will allow user to insert assembly language source code into the source
file. This command accepts text from the keyboard and inserts it before line number
"line#". If "line#" is not specified, text is inserted after the last line in the text file. If

the current text file is empty, then insert will begin entering text into a new text file. If a line
number is specified which is larger that the number of lines in the file, text will be inserted
after the last line in the text file. To terminate the insert mode type control-E as the first
character of a new line.

LISA uses a logical line number scheme. The first line in the text file is line number one,
the second line is line number two, line three is number three & etc. Whenever you
perform an insertion between two lines the line numbers are more or less "renumbered".

As an example of what happens, boot LISA disk and get into the command interpreter.
Once in command mode, type "I" followed by a return.

LISA will respond with a line number of one and will wait for text to be entered in the
system. At this point type "LBL LDA 00" followed by return.

LISA will print a "2" on the video screen and await the entry of line number two. Now
type " END" (note the space before the END) followed by return.

LISA will respond by printing "3" on the video screen. Now press control-E followed by
return to terminate text entry. LISA will return to the command level which you will verify by
noticing the "!"prompt.

Now type "I 2" at the command level. LISA will respond with the line number two and will
once again await you text entry.

DO NOT WORRY ABOUT DELETING THE PREVIOUSLY ENTERED LINE #2.

Each time you enter a line LISA "pushes" the existing lines down into memory. To prove
this to yourself enter " STA $00" (note the blank space before the instruction) followed by
return.

When "3" appears prompting you to enter a new line press control-E to exit the Insert
mode.

Now type "L" and the Apple will display:

1 LBL LDA 00
2 STA $00
3 END

Notice that "END" which was previously at line #2 has become line #3 after the insertion.
Since the line numbers change every time an insertion is performed it's a good idea to list
a section of your source every time you perform an operation on it because the line
number you decide to use may have been modified by previous editing.

D(ELETE) line#1{,line#2}

Deletes the lines in the range specified. If only one line number is specified then only that
line is deleted. If two line numbers, separated by a comma, are specified then all the lines
in that particular range are deleted.

Examples:

DELETE 2 deletes line #2
DELETE 2,6 deletes lines 2 to 6

Note that again, as with insert, the lines are renumbered after the command to reflect their
position relative to the first line.

L(IST) {line#1{,line#2}}

Lists the lines in the specified range. If you need to scan a section of the text file there are
two options that facilitate searching for a specified line. If, during the list, you press the
space bar the listing will stop until the space bar is pressed again. If the space bar is
repressed the listing will continue from where it left off. If instead of pressing the space bar
you press control-C then you will be returned to the command level.

Examples:

LIST lists the entire file
LIST 2 lists only line #2
LIST 2,6 lists lines 2 to 6

L(OAD) filename

The specified LISA files will be loaded in. All valid DOS binary file options except ",A" may
be suffixed to the name. LISA files are usually loaded in at location $1800.

Example:

LOAD LZRIOS loads the file LZRIOS from disk

Note: Although the command "LOAD" is begin used this does not mean the LISA used the
DOS LOAD command. Internally (and before DOS has a chance to see it), "LOAD" is
converted to “BLOAD".

S(AVE) filename

The file in memory is saved to disk under the specified name. SAVE is internally
converted to "BSAVE", so all conventions, restrictions, etc., which apply to "BSAVE" may
be used (You cannot, however, specify a starting address and length as LISA does this
automatically and will override your specs). Files saved using the LISA S(AVE) command
are saved as special "L" type files.

Example:

SAVE TEMP saves the source file TEMP to disk
SAVE TEMP,S6,D2 saves the source file TEMP to disk in a specified drive.

AP(PEND) filename

Reads in a source file from disk and appends it to the existing source file in memory.

Example:

APPEND TEMP
APPEND TEMP,D2

^P (control-P)

When control-P is pressed LISA will jump to location $E009 and begin execution there.

Currently at location $E009 is a JMP to the command processor used by LISA. You may
replace this JMP with a jump to a location where your particular routine begins. Then by
pressing control-P (followed by return), LISA will jump to your particular routine. To return
to the command level you may either execute an RTS instruction, or JMP $E003. Space
has been provided for your user routine in the area $9480-$95FF.

WARNING**** Use only a JMP instruction at location $E009 as LISA system jumps appear
both before and after the JMP $E009.

A(SM)

Assembles the current text file in memory. LISA currently allows up to 512 labels in the
symbol table, to change this see the appropriate appendix. During assembly if any
errors are encountered LISA will respond with:

 A(BORT) OR C(ONTINUE)?

as well as the error message. Should you wish to continue the assembly (possibly to
see if any further errors exist), write down the line number of the current infraction and
press "C" followed by return. If you wish to immediately exit the assembly mode to correct
the error, press "A" then return.

W(RITE) filename

Writes the current text file to disk as a TEXT file type. This allows you to manipulate your
text file with a BASIC or APPLESOFT program. In addition, TEXT type files may be read
into APPLE PIE (VER. 2.0 or greater), and you can modify your text files using this very
powerful text editor. The first line output when using the W(RITE) command is "INS". With
"INS" as the first line in the text files you may use the DOS "EXEC" command to reload
these TEXT type files back in LISA (See control-D for more)

L(ENGTH)

Displays the current length of the text file in memory.

^D (control-D)

Allows you to execute one DOS command from LISA.

^D PR#n -turns on an output device
^D IN#n - " " " input "
^D INT -does not put you into BASIC, but rather returns you to LISA
^D EXEC filename -where file is a TEXT type file previously created by the
W(RITE) command, loads into LISA the desired text file.
~D (any other DOS command) -executes that command

M(ODIFY) line#1{,line#2}

Performs the sequence:

 L(IST) line#1{,line#2}
 D(ELETE) line#1{,line#2}
 I(NSERT) line#1

which allows you to effectively replace a single line or many lines. If you do not specify a
line number then the entire file will be listed. You will get an ILLEGAL NUMBER error, and
you will be placed in the insertion mode with the inserted text being inserted after the last
line of the text file.

N(EW)

Clears the existing text file. You are prompted before the clear takes place.

BRK

Exits from LISA, enters Apple monitor

F(IND)

Searches for the label specified after the find command. FIND will print the line number of
all lines containing the specified label in the label field.

Screen editing

To move the cursor, use the following key combinations:

up Control-O
down Control-L

right Control-K
left Control-J

Other cursor commands:

Right arrow (Ctrl-U) Copies character under cursor
Left arrow (Ctrl-H) Deletes character under cursor

Using lower case characters
Unless you have Lazer MicroSystems' Lower Case +Plus lower case letters will appear
as garbage on the screen. They are lower case in memory, hence dumping to the printer
with lower case capabilities you will have lower case printed. When moving the cursor
over the lower case letter junk will seen on the screen, you will see a blinking or
inverted upper case letter. You can use this facility to double check lower case entry if you
do not have the adapter. Since the shift key does not function for input, the ESC is used as
a shift key when a software shift has to be used. "Caps lock" mode, is toggled by
pressing- Control-S. In upper case mode the cursor will blink, in lower case mode it
will be a static inverted character. While the caps lock mode is on the ESC will not work.

LOWER CASE ADAPTED SPECIAL KEYS:

Pseudo Opcodes

As opcodes tell the 6502 what to do, pseudo opcodes tell LISA what to do. With pseudo
opcodes you may reserve data, define symbolic addresses, instruct LISA as to where the
code is to be stored, access the disk, etc. The pseudo opcodes are:

OBJ: OBJECT CODE ADDRESS
 SYNTAX: OBJ <expression>

Character Press Key

| "!" or "1"

~ "'" or "7"
{ "(" or "8"
} ")" or "9"
["<" or ","

] ">" or "."
_ "-"
\ "/"````

DEL Prints a funny looking box on the screen (but not on the printer) by pressing
"#" or "3"

An assembler takes a source file which you create and generates an "object code" file.
This file has to be stored somewhere. It is possible to store the object file to disk, however
this causes assembly to proceed very slowly, because the disk is very slow compared to
the computer. The object file many also be stored directly in memory thus allowing the
source file to be assembled at full speed. Except in certain cases, LISA always stores the
assembled program into RAM memory.

Under normal circumstances (meaning you have not told LISA otherwise), programs are
stored in RAM beginning at location $800 and grow towards high memory. Often, the user
needs to be able to specify where the code will be stored in memory. The OBJ pseudo
opcode would be used in this instance. When an OBJ pseudo opcode is encountered in
the source file, LISA will begin storing the object code generated at the specified address.
This allows you to assemble code at one address and store it in another. Another use of
the OBJ pseudo opcode is to reuse memory in a limited memory environment.

Suppose you wish to assemble a text file 10K bytes long. Unfortunately LISA does not
leave you 10K free for this use (only 4K). What you do is to assemble the first 4K of code
and then save this first portion of code to disk. Now, by using the OBJ you can instruct
LISA to assemble the next 4K of code on top of the old code which was saved to disk.
This allows a very flexible management of memory resources. Another example, is when
you wish to assemble your code for an address outside the $800-$1800 range. Since
LISA uses almost every byte outside of this range for one thing or another you must
assemble your code within this area. Unfortunately, not all users want to be restricted to
this area. Many users might wish to assemble an I/O driver into page 3 or possibly up in
high memory.

Regardless of where you wish the program to run, the object code generated by LISA must
be stored within the range $800-$1800. Simply use the OBJ to store your code beginning
at location $800 and remember to move it to it's final location (using the monitor "move"
command or the DOS ",A$" option) before running it. LISA contains a special
variable called the code counter. This variable points to the memory location where the
next byte of object code will be stored. The OBJ will load the value contained in its
operand field into the code counter (in fact that's the only operation OBJ performs). Other
pseudo opcodes affect the code counter as well, they will be pointed out as they are
discussed.

ORG:PROGRAM ORIGIN
 SYNTAX: ORG <expression>

When ORG is encountered LISA begins generating code for the address specified in the
address expression. When you use ORG you are making a promise that you will run your
program at the address specified. If you set the program origin to $300, then you must
move the program to location $300 before running it.

Whenever ORG is executed it automatically performs an OBJ operation as well. Thus, if
you do not want the code to be stored where you have ORG'd it, you must immediately
follow the ORG statement with an OBJ statement. If you do not specify a program origin
in your program, the default will be $800.

Multiple ORG statements may appear in your program. Their use, however, should be
avoided as they tend to cause problems during the modification of a program (e.g.if you re-

ORG the program at some later date those embedded ORG statements can kill you). LISA
supports several opcodes that reserve memory, so there is no real need for more than one
ORG statement within a normal program.

ORG evaluates the expression in the operand field and loads the calculated variable into
the code counter and the LISA location counter variable. It is important to remember that
ORG affects both the location counter and code counter.

WARNING** Locations $800-$1800 are reserved for code storage. If you assemble
outside this range possible conflicts with LISA, the source file, the symbol table, or I/O
buffer areas may arise. If you need to assemble your code at an address other than in the
range $800-$1800 be sure to use the OBJ pseudo opcode to prevent conflicts.

EPZ: EQUATE TO PAGE ZERO
 SYNTAX: LABEL EPZ <expression>

The label is assigned the value of the expression and entered into the symbol table. If
<expression> evaluates to a value greater than $FF then an assembly time error occurs. If
any symbolic references appear in the expression then they must have been previously
defined with an EPZ pseudo opcode, or an error will result. Although LISA doesn’t require
you to do so, it is a good practice to define all of you zero page locations used in your
program before any code is generated.

Zero page is used mainly to hold variables and pointers. Before wildly using up locations in
zero pages, it's wise to consult your Apple manuals to make sure that there are no zero
page conflicts between your program and the monitor or whatever language you are using.

When a variable is defined using the EPZ pseudo opcode then zero page addressing will
be used if at all possible. The label is not optional for the EPZ opcode. The EPZ opcode
only supports the addition and subtraction operators in address expressions.

EQU: EQUATE
 SYNTAX: LABEL EQU <expression>
 or LABEL = <expression>

The 16-bit value of <expression> will be used as the address for LABEL, and it will be
entered into the symbol table. Absolute addressing will always be used when using the
EQU opcode, even if the expression is less than $100. <expression> may contain
symbolic references (i.e. labels), but they must have been previously defined in either an
EQU statement, an EPZ statement, or as a statement label. EQU may also be used to
create symbolic constants. For instance:

 CTLD EQU $84 or HIMEM EQU $9600 or LETRA = "A"
 LDA #CTLD LDA #HIMEM LDA #LETRA

The use of symbolic constants in your program helps improve the readability considerably.

ASC: ASCII STRING DEFINITION
 SYNTAX: ASC 'any string'

 or ASC "any string"

The ASC pseudo code instructs LISA to store the following text directly in memory
beginning at the current location. If the apostrophe is used, then the text is stored in
normal ASCII format (i.e. high order bit off). If the quotes are used, then the character
string is stored in memory in an extended ASCII format (i.e. high order bit on). Since the
APPLE II computer uses the extended ASCII format, you will probably use the latter
version most of the time. If the apostrophe begins the string, then the apostrophe must be
used to terminate the string. Quotes may appear anywhere inside such a string with no
consequence. If the quotes are used to delimit the string, then an apostrophe may be
placed anywhere inside the string with no problems whatsoever. In this case the quote
must be used to terminate the string.

Examples:

ASC 'THIS "STRING" IS OK!'
ASC "SO IS THIS 'STRING'"
ASC 'THIS IS 'NOT' ALLOWED'

The last example is illegal because the first occurrence of the apostrophe terminates the
string, leaving an illegal operand delimiter (NOT) in the operand field. Should you ever
need to place an apostrophe or a quote within a string delimited by the respective
character it can be accomplished by typing two of these characters together in the string.

Examples:

 ASC "THIS IS ""HOW"" YOU DO IT!"
 ASC 'THIS ''WAY'' WORKS FINE ALSO'
 ASC '''THIS LOOKS WEIRD,
BUT IT WORKS'''

In the last example the created string is:

 'THIS LOOKS WEIRD,
BUT IT WORKS'

Note: ASC is more or less obsolete. However, it was decided that LISA 2.5 had to be
compatible with earlier versions of the product and that is why it is still included. That said,
when writing new programs you should use the BYT and .DA pseudo opcodes.

STR: CHARACTER STRING DEFINITION
 SYNTAX: STR 'any string'
 or STR "any string"

Most high level languages define a character string as a length byte followed by 0 to 255
characters. The actual number of characters following the length byte is specified in the
length byte. Strings stored this way are very easy to manipulate in memory. Functions
such as concatenation, substring (RIGHT$, MID$, and LEFT$ in BASIC), comparisons,
output, etc., are accomplished much easier when the actual length of the string is known.

Except by manually counting the characters up & explicitly prefacing a length byte to your
string,the ASC opcode does not allow you to use this very flexible data type. The STR
opcode functions identically to the ASC opcode with one minor difference, before the
characters are output to memory, a length byte is output. This allows you to create strings
which can be manipulated in a manner identical to that utilized in high level languages.

Examples:

STR 'HI' outputs 02 48 49
STR "HELLO" outputs 05 C8 C5 CC CC CF

HEX: HEXADECIMAL STRING DEFINITION

The HEX pseudo opcode allows you to define hexadecimal data and/or constants for use
in your program. HEX may be used for setting up data tables, initializing arrays, etc. The
string of characters following the HEX are assumed to be a string of hex digits. Each pair
of digits is converted to one byte and stored in the next available memory location pointed
at by the location counter Since exactly two digits are required to make one byte, you must
enter an even number of hexadecimal digits after the HEX pseudo opcode, or an error will
result. As such, leading zeros are required in hex strings. The hex string does not have to
begin with a "$" (in fact it cannot begin with a "$"!).

Examples:

HEX FF003425
HEX AAAA8845
HEX 00

LST: LISTING OPTION ON

LST activates the listing option. During pass three all source lines after LST will be listed
onto the output device (usually the video screen). Listing will continue until the end of the
program or until an NLS pseudo opcode is encountered. Note that there is an implicit
"LST" at the beginning of your program, so unless otherwise specified your program will be
listed from the beginning.

NLS: NO LISTING/LISTING OPTION OFF

NLS deactivates the listing option. When encountered in the source file, all further text until
the end of the program or until an “LST" is encountered, will not be listed. LST & NLS can
be used together to list small portions of a program during assembly. By placing an "NLS"
at the beginning of your program, then a "LST" before the section of code you want to
printed, and then an "NLS" after the text you want printed you can selectively print a
portion of the text file during assembly. Neither "LST" nor "NLS" allow an operand.

ADR: ADDRESS STORAGE
 SYNTAX: ADR <expression> [,<expression>]

The ADR lets you store, in two successive bytes, the address specified in the operand
field. The address is stored in the standard low order/high order format. ADR can be used
to set up "jump tables" or for storing 16-bit data. ADR is particularly useful for storing
decimal and binary constants since conversion to hex is performed automatically. Multiple
address expressions may appear in the operand field. If additional address expressions
are present, they must be separated from each other with commas.

Examples:

 ADR LABEL ADR LABEL-$1 ADR LABEL+$3
 ADR LBL1,LBL2,LBL3
 *- ADR !10050 *- ADR %10011011000111

* Note in particular the last two examples which demonstrate how you can store decimal
and binary constants in memory using the ADR. This technique is very useful for
translating BASIC programs to assembly language.

END: END OF ASSEMBLY

END tells LISA that the end of the source file has been encountered. During passes one
and two LISA will start at the beginning of the text file and continue with the next pass. At
the end of pass three control will be returned to LISA's command level. If the END is not
present in the source file then a "MISSING END" error will occur at the end of pass one.

ICL: INCLUDE TEXT FILE
 SYNTAX: ICL "filename"

ICL is a very powerful and advanced pseudo opcode. It allows you to "chain" in another
text file. This pseudo should be used when there is not enough memory available for the
current text file. LISA provides you with enough memory for approximately 1500 to 2000
lines of text. Should you try to exceed this limit a "memory full" error will result. When this
happens, delete the last 10 lines or so (to give you working space) and, as the last line of
your text file use ICL to link in the next file.

Once the ICL has been entered, save the text file to disk. Now use the N(EW) command to
clear the text file workspace and then enter the rest of your assembly language text file,
continuing from where you left off. Once you have finished entering the text, save the text
file disk under the name specified in the ICL. Now load the original files and assemble it.

During assembly LISA will automatically bring in the second file from disk and continue
assembly at that point.

Note** You shouldn't use "ICL" unless you really have to. The use of ICL slows down
assembly from 20,000 lines per minute to about 500-1000 lines per minute due to
considerable disk access.

Since LISA is a three pass assembler the original text file in memory must be saved to
disk. It is saved under the name "TEMP." so you should be careful not to use that filename.
After assembly the resident text file in memory will be the last text file chained in.

The original text file is not brought back into memory. During assembly, if an error occurs in
a section of code which was ICL'd off of the disk, the error message will give you the name
of the file, the line number within the file where the infraction occurred, as well as the
option of continuing or aborting. If you abort you will find the text file with the error currently
in memory. You may fix the error, save the text file to disk again under its original name,
then reload "TEMP." and reassemble the text file. ICL is similar to END in that it must be
the last statement in the text file. Any additional lines after the ICL will be ignored.
There is no limit to the number of files that you can chain together using ICL.

DCM: DISK COMMAND
 SYNTAX: DCM "dos command"

During pass one and two the DCM pseudo is ignored. During pass three, however,
whatever string is placed between the quotes gets executed as an Apple DOS command.
A control-D is not required at the beginning of the DOS command. The DCM has several
uses, you may use it to selectively turn on and off input and output devices during
assembly (using PR# & IN#), it can be used to save generated code to disk, thus freeing
memory space. It can be used to create a disk text file listing of the assembled program,
also it can be used to prevent the symbol table listing from being printed, and for loading
load modules off of the disk after an assembly. Since LISA only allows 4K bytes for your
obj code (from $800-$1800), you have to BSAVE your obj file to disk when this 4K is used
up. Once the file is BSAVEd to disk you can use the OBJ pseudo to begin storing your
object code beginning at location $800 once again. When the second 4K is used up you
must once again use the DCM/OBJ sequence to make room for the new object code.

Once these "load modules" have been saved to disk, you can reload them in sequence
and then run the finished product. However, you cannot simply BLOAD each of the object
modules and expect your program to run. The BLOAD command loads the program in
from where it was saved, since all load modules were saved beginning at location $800,
the BLOAD command will load them in on top of each other! To get around this, use the
"A$" option when BLOADing a program to load the module into its correct memory
location.

In fact, when BSAVEing a program with DCM its a good idea to make the loading
address part of the filename (for example: OBJ.1/$1800)

 Examples:
 .

DCM "BSAVE OBJECT/$800,A$800,L$1000
DCM "BSAVE OBJECT/A$1800,A$800,L$1000"

The symbol table listing may be suppressed by using the disk command "INT". This
should be entered in your program immediately before the "END". Assembly automatically
terminates when the DCM "INT" pseudo is encountered and you are returned to the
command level. To create a disk file listing of the assembly text file use the DCM
command sequence:

DCM "OPEN <filename>"
DCM "WRITE <filename>"

Once this has been accomplished all further text normally written onto the screen will be
sent to the disk under the name "<filename>". The last statement before the END (or DCM
"INT" if present) should be:

DCM "CLOSE".

This will close the file, restore buffers, etc. Since the CLOSE will be executed before the
symbol table is printed, the symbol table will not be included in your text file listing. If you
need to include the text, then omit the DCM "CLOSE" and explicitly CLOSE the file with
an immediately CLOSE command when you are returned to the command level.

Warning** Due to the memory management techniques used (48K MAXFILES) is always
set to one. This implies that several problems can develop if your program contains other
disk commands sandwiched between the OPEN & CLOSE commands. Should you need
to execute a disk command while writing the assembled source to disk you must first
CLOSE the file. Once closed, you can execute the DOS command. After the command
(DOS) is executed you may continue writing the assembly listing by APPENDing (instead
of OPENing) and then WRITEing to the file.

*NOTE ** Remember, any DOS command terminates the WRITE command. So, if you
issue any DOS commands when writing a text file out to disk you must reissue the
WRITE command immediately after the DOS command. ICL uses the DOS, so care must
be take when writing files to disk.

PAU: PAUSE/FORCE ERROR

PAU is ignored during passes one and two. During pass three however, this pseudo will
automatically cause an error ("**ERROR: PAUSE ENCOUNTERED") to occur. At this point
the programmer may A(BORT) the assembly or C(ONTINUE) the assembly.

PAU is very useful for debugging purposes as you don't have to watch the screen with
your finger on the space bar should you desire to stop the assembly listing at some
particular section of code. PAU is also useful in determining where the 4K cutoff is when
you are saving obj files.

Although an error message is generated, this has no effect on the assembly. If the pause
error is the only error encountered, then the assembly can be considered successful.

PAG: PAGE EJECT

PAG will print a control-L to the listing device when encountered during pass three. If you
are sending the listing to a printer with forms control, your printer should skip to top-of-
form. PAG allows you to format your listings nicely, breaking up subroutines so that they
begin on different pages.

DCI: DEFINE CHARACTERS IMMEDIATE
 SYNTAX: DCI "any string"
 or DCI 'any string'

DCI is a special hybrid pseudo. In function its identical to ASC with one exception: The last
character in the string will have an order bit which is opposite the value for the rest of the
string. That is, if you are storing the string in memory with high order bit on, then the last
character in the string will be stored with its high order bit equal to zero. If the string is
being stored memory with the high order bit off, then the last character in the string will
be stored in memory with the high order bit one.

Examples:

DCI "ABCDE" generates C1 C2 C3 C4 45
DCI 'ABCDE' generates 41 42 43 44 C5

INV: INVERTED CHARACTERS
 SYNTAX: INV "any string"
 or INV 'any string'

INV takes the string which follows and outputs the characters as APPLE inverted (inverse)
characters. The high order bit is always off: so whether you use the apostrophe or quote to
delimit the string is of no consequence. You should realize that only the characters directly
available from the Apple keyboard plus "[", "\", "_" have inverted counterparts. The lower
case letters and several special characters do not have corresponding inverted
counterparts, and should they appear within the INV string, garbage will be created.

Examples:

INV "ABCDE" generates 01 02 03 04 05
INV 'ABCDE' generates 01 02 03 04 05

BLK: BLINKING CHARACTERS
 SYNTAX: BLK "any string"
 or BLK 'any string'

BLK is the counter to INV. Instead of generating the code for inverted characters, BLK
generates code for blinking characters. All restrictions mentioned for INV apply as well to
BLK (for the same reason).

HBY: HIGH BYTE DATA
 SYNTAX: HBY <expression> {,<expression>}

HBY is similar to ADR except only the high order byte of the following address expression
is stored in memory. Combined with BYT its possible to break up address tables into two
groups of one byte data apiece instead of the two-byte data generated by ADR. This
allows a very convenient method of loading addresses when using the index registers.

Examples:

HBY $1234 generates $12
HBY $F3 generates $00

HBY LBL generates H.O. BYTE OF THE ADDRESS LBL
HBY "A" any ASCII data always generates $00
HBY LBL1,LBL2,LBL3

BYT: LOW BYTE DATA
 SYNTAX BYT <expression> {,<expression>}

BYT works in a manner similar to HBY except it stores the low order address byte into
memory at the current location. BYT is also useful for introducing symbolic values into
your programs. For instance, $00 is often used as the "end-of-string" token. You can define
a constant "EOS" (for”end-of-string") and then use BYT to store the value for EOS in
memory for you. This has two beneficial effects on your program. First, it makes your
program easier to read since "BYT EOS" states exactly what the value is for whereas
"HEX 00" is somewhat ambiguous. The second beneficial feature is the fact that should
you decide to change the EOS value from zero to say ETX (ASCII end-of-text) you only
need change one line (the EQU statement which defines EOS) instead of having to go
through your program and change each occurrence of "HEX 00" to "HEX 03"

Examples:

BYT $1234 generates $34
BYT $F3 generates $F3
BYT "A" generates $C1 (EXTENDED ASCII FOR "A")
BYT LBL generates CODE CORRESPONDING TO LBL’S LOW ORDER ADDRESS

DFS: DEFINE STORAGE
 SYNTAX: DFX <expression> {,<expression>}

DFS reserves memory storage for variables. DFS takes the first address expression found
in the operand field and adds this value to both the location counter and the code counter.
This leaves a wide gap of memory open for use by arrays, variables, etc. If the second
operand is not specified, then the memory space reserved is not initialized and contains
garbage. The second operand in the address expression, if specified, determines the
value to which memory will be initialized. The low-order byte of the second address
expression will be stuffed into each byte of the storage reserved by the DFS pseudo.

** Note** This initialization is optional. If it is not explicitly required it should not be used
as it slows assembly speed down considerably. If more than two expressions are
specified, the remainder are ignored.

Examples:

LBL DFS $1 reserves one byte at location "LBL"
LBL1 DFS $100 reserves 256 bytes at location "LBL1"
LBL2 DFS 300,0 reserves 300 bytes and inits them to zero

DBY: DOUBLE BYTE DATA
 SYNTAX: DBY <expression> {,<expression>}

DBY is used in a manner identical to ADR except that the address data generated is
stored in high order (H.O.) byte/low order (L.O.) byte order instead of the normal L.O./H.O.
order.

Examples:

DBY $1020 generates $10 $20
DBY $1234 generates $12 $34
DBY LABEL generates (H.O. BYTE) (L.O.BYTE)
DBY LBL1,LBL2,LBL3

LET: LABEL REASSIGNMENT
 SYNTAX: LABEL LET <expression>

LET allows the programmer to redefine a previously defined (non-zero page) label. This is
useful for defining local labels, counter, etc.

One note of caution: LET is active on passes two and three. EQU and statement label
declarations are noted only during pass two. If you declare a label during pass two as a
statement label or with the EQU pseudo and then subsequently redefine it with a LET
pseudo, the address used during pass three is the value defined in the LET statement
regardless of the EQU or statement label definition. This is due to the fact that a label
defined using the LET retains that value until another LET redefinition (with the same
label) comes along. Since EQU is not active during pass three and statement label
values are only noted during pass two, the label will never be set to its original value.

These problems are easily overcome, simply use LET in place of EQU in the original
definition. If the original definition was a statement label then substitute "LABEL LET*"
instead.

TTL:TITLE
 SYNTAX: TTL “STRING"

The TTL pseudo causes an immediate page eject (via control-L/form feed character) and
then prints the title specified at the to of the page. Every 65 lines a page eject is issued
and the title is printed at the top of the new page.

.IF: CONDITIONAL ASSEMBLY
 SYNTAX: .IF <expression>

Conditional assembly under LISA lets you selectively assemble code for different operating
environments. For example, you could have a couple of equates at the beginning of a
program which specify the target Apple system.

Labels such HASPRNTR, HAS64K, HASMODEM, LCPLUS, KBPLUS, etc., can be set to
true or false, depending upon the hardware involved.

For example, LISA 48K and 64K are the same file with just one equate changed.

Conditional assembly handles all the minor details. Conditional assembly uses three
pseudo opcodes:

‘.IF'
'.EL'
'.FI'.

'.IF' begins a conditional assembly sequence. '.IF' is followed by an address expression.
If it evaluates to true (non-zero), the the code between the '.IF' pseudo and its
corresponding '.EL' or '.FI' pseudo is assembled. If the address expression evaluates to
false, then the code immediately after the '.IF' pseudo-op will not get assembled

.EL: ELSE
 SYNTAX: .EL

'.EL' terminates the '.IF' code sequence and begins the alternate code sequence. The
alternate code sequence is assembled only if the address expression in the operand field
of the '.IF' pseudo-op evaluates to false (zero). '.EL' (and its corresponding code section)
is optional and need not be present in the conditional assembly language sequence.

.FI: CONDITIONAL ASSEMBLY BLOCK END
 SYNTAX: .FI

'.FI' terminates the conditional assembly language sequences. It must be present whether
or not there is a '.EL' pseudo-op present. All code after a '.FI' will be assembled regardless
of the value in the ‘.IF' operand field.

Note LISA does not support nested IF's. If a nested IF is present, you will be given a
nasty error at assembly time. All IF's must be terminated before an END or ICL ps-op is
encountered or assembly will terminate. To see any example of conditional assembly, look
at the "LISA P1.L' file on the LISA master disk.

PHS:PHASE
 SYNTAX: PHS <expression>

The PHS ps-op lets you assemble a section of code for a different address, yet include the
code within the body of a program running at a different address. This feature lets you
include a short driver that runs at location $300, for example, within a program that
normally runs up at $1000. It is the responsibility of the program at $1000 to move the
program down to location $300. Technically, PHS loads the location counter with the
address specified in the address expression, but it does not affect the code counter at all.

In essence, PHS performs an ORG without the OBJ. DPH must be used to terminate the
PHS code sequence.

DPH: DEPHASE

 SYNTAX: DPH

DPH is used to terminate the section of code following the PHS ps-op. It loads the code
counter into the location counter, restoring the damage done by the PHS ps-op.

.DA
 SYNTAX: .DA <special expression> {,<special expression>}

'.DA' is another hybrid ps-op. It is a combination of the ADR, BYT and HBY ps-op. It is
particularly useful with the SPEED/ASM package’s CASE statement and similar routines.

Examples:

LBL1 .DA #CR,RETURN
LBL2 .DA 'C',#LBL,/LBL2,LBL2
LBL3 .DA "HELLO THERE",#0,STRADR

If an address expression is prefaced with the pound sign ("#") then the lower order byte
will be used. If an address expression is prefaced with the slash ("/") then the high order
byte will be used.

If neither a pound sign or a slash is specified, then the two bytes of the address (in low/
high format) will be stored in memory.

GEN: GENERATE CODE LISTING
 SYNTAX: GEN

GEN (and NOG) control the output during assembly. If GEN is in effect (the default) all
object code output is sent to the display device.

NOG: NO GENERATE
 SYNTAX: NOG

NOG will cause only the first three bytes to be listed to the output device during an
assembly. This dramatically shortens program listings containing strings and multiple
address.

USR: USER DEFINED PSEUDO OPCODE
 SYNTAX: USR <anything>

Additional features/Random notes

Extended mnemonics

The word mnemonics means memory aid. "LDA #$FF" is certainly easier read as "load
the accumulator with the constant $FF" than is A9FF. There are times when even the
mnemonic doesn't make much sense. For instance BCC, Branch if Carry Clear, does not
register in most people's minds as meaning the same as branch if less than. Several 6502
instructions can be used, or recognized by the use as a different function. The BCC
instruction is but one example.

In order to make 6502 assembly language programming easier to use by the programmer,
LISA incorporates several "extended" mnemonics. These extended mnemonics are simply
redefinitions of existing mnemonics.

The extended mnemonics are:

BLT Branch if Less Than, same as BCC
BGE Branch if Greater or Equal, same as BCS
BTR Branch if TRue, same as BNE
BFL Branch if FaLse, same as BEQ
XOR eXclusive OR, same as EOR

FALSE is defined as $00 and TRUE is defined as anything else.
Note that these extended mnemonics are included IN ADDITION to the existing
mnemonics.

SWEET-16 Mnemonics

Sweet 16 is a meta processor or "pseudo microprocessor" originally implemented in 6502
assembly language written by Steve Wozniak and used in the Apple II. Sweet 16 is a kind
of virtual machine that gives the 6502 programmer a 16 bit extension to the CPU. Sweet
16 creates sixteen 16-bit registers/pointers (in zero page) and new opcodes to use this
registers. Although Sweet 16 is not as fast as standard 6502 code, it can reduce the code
size of your programs and ease programming.

LISA incorporates a Sweet-16 assembler for use with the Sweet-16 pseudo machine
interpreter in the Apple ROMs. For the most part LISA uses standard WOZ mnemonics
except where Wozniak used two or four character mnemonics. Since this tends to disrupt
the nice assembly listing, all two & four character long mnemonics were converted to three
characters in order to improve the listing format.

Sweet-16 mnemonic conversion
Woz LISA Woz LISA

SET SET BR BRA

LD LDR BNC BNC

Warnings and other extraneous notes

The RESET key has been and always will be a major pain. When pressed at the wrong
time it can cause all kinds of trouble. There are two times when RESET absolutely cannot
be pressed. Whenever anything is being written out to disk, should the RESET key be
pressed you will, at least, destroy the file being written. At worst you could destroy the
whole disk. Users of the Autostart ROM cannot hit RESET while in the LISA I(NSERT)
mode. In this case, you will be returned to the command level & part of your text file may
be lost. Other than the above cases there are fixes, should you accidentally hit RESET. If
you were in the command processor when RESET was pressed, simply type E003G or
CTRL-C. This will return you to LISA without erasing the existing text file, or changing
pointers, etc. If you were in the I(NSERT) mode when the RESET key was pressed, you
CANNOT use E003G to restart LISA. If you do so, your text file will be partially destroyed.

If you do hit RESET while in the I(NSERT) mode, simply type E006G from the monitor and
you will be returned to the insert mode. The only data lost is the last line you typed in
(hopefully).

To prevent depression of the RESET key you might think of removing it. A small
screwdriver may pop it off easily. “Cold start” is E000G (control-B). This clears the text file,
reinitializes pointers. Never set MAXFILES to anything other than 1 while using LISA 48K.
If you do set MAXFILES to anything else, LISA will be destroyed. 

ST STO BC BIC

LDD LDD BP BIP

STD STD BM BIM

ADD ADD BZ BIZ

SUB SUB BM1 BM1

POPD PPD BNM1 BNM

CPR CPR BK BKS

INR INR RS RSB

DCR DCR BS BSB

RTN RTN BNZ BNZ

POP POP STP STP

Woz LISA Woz LISA

Advanced Topics

Memory allocation

Upon “cold start”, several parameters are initialized, in particular it sets the start of text
pointer (STXT) to $1800 and the upper text file limit to $8000 (HMEM). This gives you 4K
for object code, 26K for text file use, and 5K for symbol table. Since 80% of assembly
language programs are less than 2000 lines long, contain less than 512 symbols, and
produce object code that is less than 4K bytes long, the “cold start” setting should prove
sufficient.

By changing two bytes at the beginning of LISA, it is possible to change these memory
"fences" anywhere in memory. For disk based operation, you may want to adjust HMEM so
that more than 512 labels are allowed. Likewise, you may want to decrease the size of the
allowable text file and make more room for object code by setting STXT to $2000 or even
$2800.

Sound judgment as to how to adjust these values. You should realize that each entry in the
symbol table requires 8 bytes. Also, the average line of text is about 10 bytes. Object code
is generated at the approximate ratio of two bytes per line of source code. To change the
parameters follow these instructions:

Load LISA and then get into the monitor (i.e. the "BRK" command). Enter E000L. A series
of jumps will be displayed and then, at location $E01B, the hex value $18 will appear.
This particular byte is used to set the high order byte of STXT. By changing location $E01B
to $20 and then executing a “cold start” (7000G/E000G) you will set STXT to $2000. The
low order byte of STXT is always set to $00. Immediately following the STXT parameter is
the HMEM parameter. Currently (at location $E01C) the value $80 is stored here. This is
the high order byte for HMEM. As with STXT this value can be modified and will take place
on the next “cold start”.

Warning: If you create a large text file set up for the co-resident mode, and then attempt to
load this text file into LISA after modifications to STXT and/or HMEM have been made,
problems may develop. If the large text files takes up more memory than is allowed by
HMEM, no load error will result. Upon assembly, however, part of your text file may be
destroyed by the symbol table. The aforementioned parameters should therefore not be
modified without careful consideration.

LISA's file (and internal) format

The LISA assembler stores source code in a binary format. LISA source files are very
similar to standard Apple II binary files, although they use a different file type, known as
new B ($40) to differentiate it from the more common B file type ($04). Just like regular
binary files, LISA source files start with the load address (2 bytes) and the length of the file
(2 bytes). The load address should generally be $1800.

In order to deliver blazing fast performance, every time the programmer enters a new
program line, the data is immediately tokenized. That means that the ASM command has
less work to do as the program’s syntax has already been validated and the 6502

mnemonics, extended mnemonics, Sweet-16 mnemonics and LISA pseudo-opcodes have
already been tokenized. In addition, LISA also tokenizes the addressing mode, which
allows for further performance gains.

In a LISA file, the 4 byte long header is followed by the source code.

Each line in the source code starts with a length byte and ends with a CR ($0D). Let’s
consider the following line:

LABEL LDA $16,X

This is how it will be stored on disk:

When a source code line doesn’t include a label, LISA 2.5 saves some disk space by not
including the first eight bytes. That situation is very easy to detect, as ASCII characters
have values < 128, while opcodes have values >= 128. Here is an example of a source
code line that does not include a label:

NOP

This is how LISA 2.5 stores this very simple line on disk:

If a line starts with either “;” ($3B) or “*” ($2A), it is a comment and the line contains no
tokens.

Example:

* This line is a long comment *

LB EL A $CD $06 X6 ,$ 1$10 $0D

Line length (bytes) Tokenized opcode (LDA)

Tokenized addressing mode (Indexed by X)

End of line (CR)

$20$4C $20$42 $45$4C $41 $20 $CD $06 $58$36 $2C$24 $31$10 $0D

Label (padded with spaces)

Operand (in ASCII)

$A0 $00$03 $0D

Line length (bytes)

Tokenized opcode (NOP)

Tokenized addressing mode (Implicit)

End of line (CR)

$A0 $00$03 $0D

If a line that contains code includes a comment after the operand, the comment will be
stored just after the operand, with no separation. In this case, the ASCII code for “;” has his
high bit set ($BB).

Example:

LDA #$00 ; CLEAR

This is how LISA 2.5 represents this line internally:

Finally, all LISA source files end with a $FF byte.

Tokenized opcodes
Token Mnemonic Type Token Mnemonic Type

$80 BGE Extended mnemonic $C0 ADC 6502 mnemonic

$81 BLT Extended mnemonic $C1 AND 6502 mnemonic

$82 BMI 6502 mnemonic $C2 ORA 6502 mnemonic

$83 BCC 6502 mnemonic $C3 BIT 6502 mnemonic

$84 BCS 6502 mnemonic $C4 CMP 6502 mnemonic

$85 BPL 6502 mnemonic $C5 CPX 6502 mnemonic

$86 BNE 6502 mnemonic $C6 CPY 6502 mnemonic

$87 BEQ 6502 mnemonic $C7 DEC 6502 mnemonic

$88 BVS 6502 mnemonic $C8 EOR 6502 mnemonic

$89 BVC 6502 mnemonic $C9 INC 6502 mnemonic

$8A BSB Sweet-16 $CA JMP 6502 mnemonic

$8B BNM Sweet-16 $CB JSR 6502 mnemonic

$8C BM1 Sweet-16 $CC Unused

$8D BNZ Sweet-16 $CD LDA 6502 mnemonic

$8E BIZ Sweet-16 $CE LDX 6502 mnemonic

$8F BIM Sweet-16 $CF LDY 6502 mnemonic

$90 BIP Sweet-16 $D0 STA 6502 mnemonic

$91 BIC Sweet-16 $D1 STX 6502 mnemonic

$92 BNC Sweet-16 $D2 STY 6502 mnemonic

$93 BRA Sweet-16 $D3 XOR Extended mnemonic

$CD $02 0 0# $$0E $0D

Line length (bytes)

Tokenized opcode (LDA) Tokenized addressing mode (Indexed by X)

End of line (CR)

$CD $02 $30 $30$23 $24$0E $0D

Operand (in ASCII)

C L; RE A

$43 $4C$BB $20 $52$45 $41

Comment

$94 BTR Extended mnemonic $D4 LSR 6502 mnemonic

$95 BFL Extended mnemonic $D5 ROR 6502 mnemonic

$96 BRK 6502 mnemonic $D6 ROL 6502 mnemonic

$97 BKS Sweet-16 $D7 ASL 6502 mnemonic

$98 Unused $D8 ADR Pseudo opcode

$99 CLC 6502 mnemonic $D9 EQU Pseudo opcode

$9A CLD 6502 mnemonic $DA ORG Pseudo opcode

$9B CLI 6502 mnemonic $DB OBJ Pseudo opcode

$9C DEX 6502 mnemonic $DC EPZ Pseudo opcode

$9D DEY 6502 mnemonic $DD STR Pseudo opcode

$9E INX 6502 mnemonic $DE DCM Pseudo opcode

$9F INY 6502 mnemonic $DF ASC Pseudo opcode

$A0 NOP 6502 mnemonic $E0 ICL Pseudo opcode

$A1 PHA 6502 mnemonic $E1 END Pseudo opcode

$A2 PLA 6502 mnemonic $E2 LST Pseudo opcode

$A3 PHP 6502 mnemonic $E3 NLS Pseudo opcode

$A4 PLP 6502 mnemonic $E4 HEX Pseudo opcode

$A5 RTS 6502 mnemonic $E5 BYT Pseudo opcode

$A6 RTI 6502 mnemonic $E6 HBY Pseudo opcode

$A7 RSB Sweet-16 $E7 PAU Pseudo opcode

$A8 RTN Sweet-16 $E8 DFS Pseudo opcode

$A9 SEC 6502 mnemonic $E9 DCI Pseudo opcode

$AA SEI 6502 mnemonic $EA Unused

$AB SED 6502 mnemonic $EB PAG Pseudo opcode

$AC TAX 6502 mnemonic $EC INV Pseudo opcode

$AD TAY 6502 mnemonic $ED BLK Pseudo opcode

$AE TSX 6502 mnemonic $EE DBY Pseudo opcode

$AF TXA 6502 mnemonic $EF TTL Pseudo opcode

$B0 TXS 6502 mnemonic $F0 SBC 6502 mnemonic

$B1 TYA 6502 mnemonic $F1 Unused

$B2 ADD Sweet-16 $F2 LET Pseudo opcode

$B3 CPR Sweet-16 $F3 .IF Pseudo opcode

$B4 DCR Sweet-16 $F4 .EL Pseudo opcode

$B5 INR Sweet-16 $F5 .FI Pseudo opcode

$B6 SUB Sweet-16 $F6 Unused

$B7 LDD Sweet-16 $F7 PHS Pseudo opcode

$B8 POP Sweet-16 $F8 DPH Pseudo opcode

$B9 PPD Sweet-16 $F9 .DA Pseudo opcode

Token Mnemonic Type Token Mnemonic Type

Tokenized Addressing modes

LISA's speed
Due to the fact that the mnemonics are tokenized and the input line is pre-scanned for
syntax errors. Speed could probably be doubled by improving the symbol table search
routines, but the need (for greater speed) is yet to justify the additional work.

Using a different text editor with LISA

If you have access to a text editor that outputs text type files to disk you may be able to
use it with LISA files. To do so W)rite the LISA file to disk as a text type file and load it into
your text editor. To convert the file back into LISA format, type control-D EXEC, followed
by the filename from the command level. When doing so, always make sure the first line in
the file contains "INS" so that the file is loaded in properly. You should not use an external
text file while creating a file, LISA's editor is better suited for that purpose. An external
editor should be used when modifying large files, such as those created by the DISASM/
65 module.

$BA STD Sweet-16 $FA GEN Pseudo opcode

$BB STP Sweet-16 $FB NOG Pseudo opcode

$BC LDR Sweet-16 $FC USR Pseudo opcode

$BD STO Sweet-16 $FD Unused

$BE SET Sweet-16 $FE Unused

$BF Unused $FF Unused

Token Mnemonic Type Token Mnemonic Type

Code Addressing mode

$00 Implicit

$01 Absolute/Zero page or relative

$02 Immediate

$03 Indirect

$04 Indirect, pre indexed by X

$05 Indirect, pre indexed by Y

$06 Indexed by X

$07 Indexed by Y

$08 Used by Sweet-16. Examples: LDR R5 or STO R5

$09 Used by Sweet-16. Example: LDR @R5

$0A Used by Sweet-16. Examples SET R1,$A034

Converting files from LISA 1.5 to LISA 2.5

To convert: LO(AD) the file into version 1.5 and W(RITE) the file back to disk as a TEXT
type file, then EXEC the file into LISA 2.5.

Loading LISA 2.X files into LISA 2.5

LISA 2.0, 2.1, 2.2, and 2,3 saved source files on the disk as binary files. LISA's LO)AD
command only loads "L" files and will generates a FILE TYPE MISMATCH ERROR if you
attempt to load a LISA 2.x binary type file.

To load these files, you have to use the LOB command (for LOad Binary) included in LISA
2.5's command set. LOB can be used to load older LISA source files into version 2.5,
which may then be saved to disk as an “L" file from LISA 2.5

”Tips & Tricks” when using LISA

Effectively using LISA’s built-in editor

The first thing to remember is that all modifications to a text file affect the line numbering
scheme. Line numbers are dynamic (always changing) as opposed to the static line
numbering system in BASIC (static means fixed). Although the line editor is very simple,
the screen editing features make it very powerful.

The screen editing commands allow the user to move the cursor up (Control-O), down
(Control-L), right (Control-K), and left (Control-J). Note that the mentioned control
characters are NOT entered into the line buffer, nor is the character under the cursor
before or after the movement takes place. The cursor control characters simply move the
cursor around on the video screen. Control-H (backspace/left arrow) erases the previously
entered character from the line buffer. If you try to erase past the beginning of the currently
entered line the backspace will be ignored. Control-U (right arrow) copies the character
currently under the cursor into the line buffer. The cursor is also moved one location to the
right. These cursor commands, when combined with the normal editing commands, form
the basis of a very powerful screen oriented editor.

Example:
If line 33 in your text file contains: "LABL LDA 00" and you wish to change it to:
"LABEL LDA 00” this is easily done.

M(ODIFY) line 33 (M 33). Press control-O to move the cursor up one line (and on top of
the "L" in “LABL").

Now press control-U (right arrow) three times to copy "LAB". When this is done press
control-J to move the cursor back one character, next press “E".

Now use the right arrow (control-U) to copy the rest of the line & hit return.

After you hit return press control-E to get out of the insert mode. Now L(IST) 33. You will
see your correction.

As you see, insertions into the current line are performed by copying up to the desired
location, moving the cursor back one character entering the insertion, and finally the right
arrow is used to copy the rest of the line. To delete characters from a line, simply use
control-K cursor control to skip over the undesired characters.

It's also possible to use the text editor to copy or move several lines of text. To copy a
block of text elsewhere in memory first L(IST) the lines you wish to copy (up to 20 lines).
Next, use the IN(SERT) command to insert text where you want to copy the block of text.
Now use the control-O to move the cursor over the first character of the lines you
previously listed out. By using the right arrow (and of course return at the end of each
line), you can copy these lines into the new memory location. If you need to copy more
that 20 lines do it in several stages, copying 20 lines each time (but remember to check
the line numbers in case they may have been changed by the I(NSERT) command. To
move a block of text, follow the procedure for the copy as above. Once copy is complete,
delete the original lines using the D(ELETE) command.

Using the AP(PEND) command
The AP(PEND) command will take a source file from disk or tape and append it to the
end of the existing text file in memory. This is useful if you need to copy a set of
declarations, a copyright notice, a set of I/O routines, etc., to each of your text files. It is
also useful when you need to copy a section of code several times in your program & the
copy procedure mentioned above turns out to be too much work. You should be careful
when AP(PEND)ing files onto a text file in memory which is very large. AP(PEND) does
not check to see if the memory is full or not, so always use the LE(NGTH) command to
make sure that there is enough room available.

Using the DOS "EXEC" command
The Apple DOS EXEC command can be used to create several "shells" or procedures.
For instance, if you create a text file on disk (using APPLE PIE or equivalent) which
contains:

INS 1
ASM
NLS DEL 1
<CONTROL E>

When you EXEC this file, it will assemble the current text file without listing the program.

The EXEC command is also useful for performing intra-file merging. By W(RITE)ing a text
file out to disk and then modifying the first line so that it reads "INS <linemnum>” instead of
just "INS" you can create a text file which when EXEC’d will insert the following text in front
of line <linenum>. Besides allowing you to insert text within a file, instead of just at the
end of the file as with AP(PEND), this version will catch a memory full condition should it
arise. In fact if you think you might run out of memory when using the AP(PEND)
command, it might be a good idea to use the EXEC method of appending text files, just in
case.

What happens when you assemble a LISA source file
The 6502 microprocessor does not understand "assembly language”. What is does
understand is "6502 machine language". Assembly language & machine language are one
and the same, but in fact, they are not.

Assembly language consists of the labels, mnemonics, expressions, and comments which
have been previously described in this manual. Machine language, on the other hand, is
an unreadable collection of binary data. An assembler's job is to convert assembly
language to machine language so that the 6502 will understand what's going on. It is fairly
easy to convert assembly language to machine language. At some point during an
assembly, stop the assembly by pressing the space bar. In addition to the source code,
which is displayed on the right hand side of the screen (possibly with warp-around) you will
see several HEX digits on the left side of the screen. The first four HEX digits
correspond to the address where the program will reside when run. Following these four
HEX digits, separated by one space, come zero to six HEX digits. These digits
correspond to the matching code generated by LISA. If you look up these code on the
6502 program card you will see that these operation codes correspond to the actual
assembly language instructions (plus any required data). The next four digits correspond
to the text file line number followed by the actual source code. Normally the object code
(machine code) produced is stored in memory at the address specified by the address
listed at the far left (but see the OBJ opcode). When you run the program the code must
be stored at this location in memory. If the program is not stored at this location in memory,
it will not work properly when executed. Some are an exception to this rule called
“relocatable” programs.

Once assembled, running an assembly language program is easy. First get into the
monitor by issuing the LISA "BRK" command. Once in monitor you may run your program
by using the monitor “GO" command (similar to BASIC "RUN"). If your program begins at
address $800 you must issue the monitor command "800G" to run your program. This
command tells the monitor to begin running the machine language program located at
location $800. To terminate your machine language program, there are several ways.
You can issue a BRK mnemonic which will stop the program, print the current contents
of the 6502 registers & return to the monitor. If you terminate with a RTS instruction
you will be returned to the calling routine (in this case the monitor). You also can use JMP
instruction to enter BASIC, LISA, Pascal or some other program directly.

NOTE ** If you plan to CALL your routine from BASIC or Pascal, you should always end
you assembly language program with a RTS instruction so that control will be returned to
the calling program.

Running a LISA program: From Start to Finish
Decide exactly what program you wish to write. Once that first crucial decision has been
taken, the next step is to decide how the program is to be written. Then the program has to
be entered into LISA's text editor.

Boot your Apple II computer with the LISA 5.25’’ floppy disk inserted in your boot drive.
After a couple of seconds you will be greeted by LISA’s home screen.

You are now ready to start programming. To do this, type "INS" at the "!" prompt. After
hitting return your screen should look something like this:

A blinking cursor will prompt you for text entry. As will all 6502 programs not utilizing
decimal arithmetic, the first instruction should be a clear decimal flag instruction or “CLD".

To enter this instruction type a space (remember, column one is reserved for labels) and
the character sequence “CLD" followed by return.

Once again the blinking cursor tells you that its waiting for text entry. The first thing we
want to do is load the accumulator with the constant $FF. To do this we must use the
assembly language instruction "LDA #$FF" (or LDA OFF if you like). To enter this
instruction type a space (remember column one....) followed by "LDA".

Now another space then "#$FF" followed by return.
Again the blinking cursor. Now we must enter the instruction which prints the contents of
the accumulator as two hex digits. This happens to be "JSR" $FDDA”.

To enter, type space, followed by “JSR, followed by space, Followed by $FDAA", followed
by return.

Now the command to return control to the monitor. Type a space followed "RTS", followed
by return.

As far as the 6502 processor is concerned, our program is complete and can be run, but
we still have to tell the LISA assembler that the end of the program has been reached. 

Let’s add an END directive at the end of the program.

Note that more text is wanted (by line 6). To get out of text entry mode type control-E as
the first character on line 6. Upon hitting return you will return to the command level.

At this point we are ready to assemble the program. However, since there are no labels in
our program, printing the symbol table will prove to be just a big waste of time. Why don't
we issue the opcode DCM "INT" just before the END so that the symbol table info will not
be printed?  

To do this type "INS 5" at the command level. This tells LISA to put you in "insert" mode
with all text being inserted before line 5.

The blinking cursor reminds you that a text entry is required. Now type in a space, followed
by DCM, followed by “INT", followed by return.

Type control-E on line 6 to end this correction. You have just completed your first assembly
language program. Congratulations!

You can use the L(IST) command to verify that your source code looks OK.

We must now assemble the text file before it can be run. To do this simply type ASM at the
command level.

The first column is the hexadecimal address where the current instruction/code reside. The
second field contains the opcodes produced by LISA. The third field is the line number
followed by the source statement. Since we did not explicitly specify a program origin,

LISA used the default of $800. Likewise, since we did not specify where the code was to
be stored in memory, it was stored beginning at location $800.

Since the program was assembled at $800, to run the program we must issue either a
"CALL 2048" from BASIC or 800G from the monitor ($800= 2048 decimal).

To run the program you just wrote from the monitor, use the LISA command "BRK" (type
BRK while in the command mode) and you will be placed in the monitor.

When you get the "*" prompt (signaling that you entered the monitor), type 800G followed
by return. The screen will look now like this:

The FF was the printed result of our program and we were returned to the monitor ("*").
If you wish to return to LISA type, “E000G" (“cold start”) or "E003G" (“warm start”).

Although you don't have to, programmers make sure that the first line in their program is
either the first line to be executed, or a JMP to the first line to be executed. This makes it

easy to determine the starting address of the program. If you plan to go back and forth
between your program & LISA, make sure that you do not utilize the zero page locations
used by LISA. Unpredictable things may happen. Before running your program, ALWAYS
make sure that you have saved your latest version to disk, its too easy for a bug in your
program to wipe out everything in memory. 

Software provided with LISA 2.5
The LZR IOS routines (LISA P2.L)
A collection of various input/output routines & several utility routines. Used for I/O handling
inside LISA.

Randy's HIRES routines
Handy hires graphic routines intended for assembly language programing. Intended
ranges is $1000-$2000. Since the routines contain a considerable amount of internal docs
there was not enough room to hold the entire text file in memory all at once. As a result
"HIRES.2" gets chained in during assembly. LO(AD) RANDY'S HIRES ROUTINES & then
A(SM) to text file. An "ICL" pseudo opcode at the end of RANDY'S HIRES ROUTINES
automatically does the rest.

Using "SOFTWARE TOOLS"
This is a collection of routines is loosely modeled after the routines found in the book
"SOFTWARE TOOLS" by Kernighan & Plauger

XREF/65
A general purpose cross reference generator for LISA 1.5F and LISA 2.x. To use you must
have Applesoft ROM or 16K RAM card, also a printer interface installed in slot one, & 48K
or larger. Make sure program is without errors if not complete insert dummy labels.

Before cross reference generate a TEXT type file of your LISA program. L)oad then
W)rite. Boot XREF/65 disk and “RUN XREF/65".

SCTOLISA
Converts SC ASSEMBLER II 3.2 to LISA. To execute this program, “BRUN SCTOLISA”
and then enter the SC ASSEMBLER II filename. After pushing return, the file will be
converted to the LISA format. The output file is written to disk as a TEXT type file named
SC-CONVERTED which may be EXEC'd into LISA. Other problems… SCTOLISA does
not handle certain types of address expressions very well.

SORT 2.0
A symbol table sort routine provided for 2.2 users. BRUN immediately after an assembly in
order to print a sorted (numeric & alphabetic) symbol table listing.

DISASM/65
This produces a symbolic disassembly listing. You can relocate programs, see how other
programs are written, patch up programs.DISAM/65 allows the user to specify
hexadecimal, ASCII, address, and pushed address data types. To run- “BRUN DISASM/
65". At the "ENTER RANGE OF DISASSEMBLY” prompt, answer the beginning & ending
addresses of the section of code you wish to disassemble.

HIRES ROUTINES
These routines are intended for assembly language programmers only. For the most
part, these cannot be called from INTEGER BASIC, APPLESOFT, OR TINY PASCAL.

Being easy to use the routines are very fast. The subroutine package includes routines
which plot a point, erase a point, perform base calculations, draw a line, create a shape
matrix, detect if any dots are ON in a specified range, clear the hires screen, turn on the
graphics, draw a picture, "OR" a picture to the screen, erase a picture from the screen,
"XOR" a picture to the screen, erase a line, and set parameters. A SYMBOL routine allows
you to draw any of the 96 printable ASCII characters onto the screen, in a format of 46x30.
Most of the routines in HIRES work on the principle of NXM picture.

Name Subroutine description

RADAR Used to determine whether or not any bits (i.e. dots) are ON
within a specified range. The calling sequence for RADAR is:
 JSR RADAR
 HEX WIDTH
 HEX HEIGHT

DRAWLN Draws a line on the HIRES screen
ERSLN Ersases a line on the HIRES screen
DXY Allows the programmer to initialize

SYMBOL Allows the user to display ASCII characters
PICTURE Points to the ASCII representation of the picture
PIX Praws the picture verbatim onto the screen
ORPIX Similar to PIX except the picture is OR’d onto the screen instead of

drawn verbatim

ANDDIX Used to erase a picture on the screen
XORPIX Exclusive-OR's the picture to the screen allowing interesting effects

APPENDICES

Appendix A
LISA Memory usage

LISA modifies the Apple DOS so if you want to return to BASIC or APPLESOFT, REBOOT
a different disk containing the language. LISA requires that DOS 3.2 be used. LISA may be
converted to DOS 3.3 by using the "MUFFIN" program.

NOTE ** for LISA 48K systems subtract $8000 from the above addresses. Control-C &
Control-B do not work for 48K systems. You must type "$6000G" or "$6003G" to cold or
warm start LISA 48K. 

Memory range Usage

$0050-$00AF Page 0 memory locations

$00E0-$00FF Page 0 memory locations

$0200-02FF Reserved for I/O buffer

$0360-$03FF Open for user subroutines

$0800-$1800 Space that can be used for user generated code

$1800-$7FFF Reserved for the source code text file

$8000-$94FF Reserved for the symbol table

$9500-$95FF Reserved for I/O buffer

$D000-$F7FF Reserved for LISA

Address Description

$E000 COLDSTART (CONTROL-B)

$E003 WARMSTART (CONTROL-C)

$E006 INSERT ENTRY

$E009 USER COMMAND

$E01B HIGH ORDER BYTE OF TEXT FILE STARTING ADDRESS

$E01C HIGH ORDER BYTE OF SYMBOL TABLE STARTING ADDRESS

$E01D MNEMONIC TABLE ADDRESS

$E01F LINES/PAGE

$E020 TITLE BOOLEAN 0=NO TTL PSEUDO OP. 1=TTL PSEUDO OP

$E024 CLOCK SLOT#

$E025 CLOCK Cn05 VALUE

$E026 CLOCK Cn07 VALUE

$E027 END OF SYMBOL TABLE ADDRESS

$E029 USR PSEUDO-OP JSR'S HERE

Appendix B
Summary of LISA Commands
Optional info & parameters in brackets

Command Description

I(NSERT) Inserts text after the last line of the text file

I(NSERT) {ln#} Inserts text before line number "ln#"

D(ELETE) ln# Deletes line in range specified

D(ELETE) ln#{,ln#} Deletes line in range specified

L(IST) List the entire file

L(IST) {ln#) Lists a single line

L(IST) {ln#,ln#} Lists lines in range specified

LO(AD) Loads text file from cassette

LO(AD) {filename} Loads file from disk

SA(VE) Saves file to cassette

SA(VE) {filename} Saves file to disk

AP(PEND) Loads a file from tape and appends it to text file in memory

AP(PEND) {filename} Loads a file from disk and appends it to the file in memory

Control-D Execute DOS command directly from LISA's command level

Control-P Jump to user defined routine

LE(NGTH) Prints the length (in hex) of the current text file

A(SM) Assembles current text file

BRK Breaks to Apple monitor

F(IND) Searches for the specified label

Appendix C
Explanation of all errors that LISA can produce

Command Level

Edit Time

Message Description

ILLEGAL COMMAND User typed in an unrecognizable command at the
command level (usually a typo).

ILLEGAL LINE # A digit was expected but not found

Message Description

ILLEGAL SYMBOL IN LABEL An illegal symbol was detected in the label field.
Possible a control character.

LABEL TO LONG A label appeared in the label field which contained
more than 6 characters. If 7th or longer in the
operand field.

ILLEGAL MNEMONIC Symbol in the mnemonic filed is not a valid LISA
mnemonic. Causes-- beginning the mnemonic in
column one, beginning the label in other than column
one, the mnemonic is missing (perhaps you forgot to
delimit a label with a ":"?), or a simple typo.

ILLEGAL ADDRESSING MODE Attempted to use an addressing mode which is not
possible for the intended instruction.

ILLEGAL OPERAND General catch-all for syntax errors in the operand
field.

NOT ENOUGH DIGITS Occurs when a hex string is entered with an odd
number of digits. It take two hex digits to equal one
byte and leading zero's must be typed into the HEX
string.

ILLEGAL HEX DIGIT A hex digit was expected, but not found (remember,
in hex strings you don't use "$").

ILLEGAL BLANK IN OPERAND
FIELD

The first non-blank character in the operand filed
after the first blank detected was not ";" or return.

ILLEGAL CHARACTER IN
STRING

Occurs when user did not enclose the entire string in
quotes, or attempted to use the " or ' characters
without doubling them up.

STRING ERROR Usually occurs when the string does not have
closing quotes.

Assembly Time Pass One

Assembly Time Pass Two

Message Description

VALUE EXCEEDS $FF User attempted to define a zero page location using
EPZ, but the value of the expression exceeded $FF.

ILLEGAL EXPRESSION The address expression in the operand field of the
EPZ opcode is invalid.

MISSING 'END' The end of the text file was encountered but no END
opcode was present. This error is an automatic
abort.

DUPLICATE LABEL Zero page variable was previously defined
ILLEGAL OPERAND IN
ADDRESS FIELD

An illegal quantity was present in the address field
("*" is not allowed in EPZ statements).

SYMBOL WAS NOT
PREVIOUSLY DEFINED IN AN
EPZ STATEMENT

Occurs when a symbolic reference is made in the
address expression, but the label was not previously
defined.

Message Description

DUPLICATE LABEL User attempted to redefine a previously defined
label.

UNDEFINED SYMBOL/ILLEGAL
ADDRESS

Occurs when a symbol is found which is not defined
in the program.

ILLEGAL FORWARD
REFERENCE

Occurs when the user attempts to use a symbolic
reference in the address expression of an EQU
opcode which has not been previously defined.

EQU W/O LABEL An equate was encountered, but no label was
present.

STY ABS,X NOT ALLOWED User attempted to use an illega addressing mode.
ABS,Y NOT ALLOWED User attempted to use an illegal addressing mode,

variable must be zero page.

** DAMAGE ** ILLEGAL
CHARACTER IN OPERAND

This usually occurs when part of the text file has
been destroyed (watch OBJ's & ORG).

Assembly Time Pass Three
Message Description

UNDEFINDED SYMBOL Label in expression field was not defined anywhere
else in the program.

BRANCH OUT OF RANGE Relative addressing only allows a range of -126 to
+129:, this range was exceeded.

UNDEFINED SYMBOL - MUST
BE ZPAGE

An undefined symbol was encountered. This
particular symbol, due to its usage, must be a zero
page variable.

ADDRESSING MODE
REQUIRES ZPAGE VARIABLE

User attempted to use an absolute location where a
zero page location is required.

Appendix D
USR Pseudo Opcode

LISA 2.5 supports a special, user-definable pseudo opcode. This is a no hold barred,
always syntactically correct, user assignable pseudo opcode. Whenever USR opcode is
encountered, a JSR to location $E029 is performed. Normally there is an RTS instruction
& two NOP instructions at location $E029. You can, replace these three bytes with a jump
to your pseudo opcode handler. In order to perform some operations you may need to call
some of the routines within the LISA package. Three files in the disk,

 LISA P1.L
 LISA P2.L
 LISA P6.TXT

contain sources for portions of LISA; you may take a look at these files and call any
routines within them. Other useful routines are:

ERRR ($EBE6)
Prints an error message and gives the user the chance to abort assembly. The calling
sequence is:

JSR ERRR
ASC 'ERROR MESSAGE’
HEX 00

If the user wishes to continue, control will be returned to your program after the HEX 00
statement.

GETADR ($EBE9)
PNTR points at the beginning of the current line, the Y register contains an index into
current line. GETADR converts the address expression found at the spot in the line
pointed at by the Y register into a 16-bit value which is returned in location SADR &
SADR+1. Carry is returned clear if there was an error, set if there was no error. Two
locations are of interest after a call to GETADR:

EYET
If true, specifies an absolute address expression, if false, zero page address
expression.

BIT #6 of AFND:
Is set if symbolic labels were pre-declared. If there are any forward references
(during pass 2, at pass 3 they are undeclared symbols) then AFND has a zero in
bit six.

SYMLUP ($EBEC)
Looks up the symbol pointed at by PNTR and the Y register. EYET should be set to
zero before calling SYMLUP. On return, EYET will be set to one if the symbol is not zero
page and the carry flag will be set if the symbol was found in the symbol tab.

Useful variables:

Upon calling the routine at $E029 several conditions exist. First, if there was a symbol at
the beginning of the line it was entered into the symbol table (during pass two, at pass
three the symbol is ignored), PNTR points at the beginning of the line, and the Y register
points at the USR mnemonic token. To point the Y register at the operand field simply
increment it by two. Now you can parse the operand field and do whatever you please
with it. The operand field is terminated with a carriage return ($0D). You must terminate
your user routine with a BIT $C080 and an RTS instruction.

  

Name Location Description

PNTR $EA Points at the beginning of the current line

LNUM $F2 Hold line number of current line

SADR $91 Value of symbol or address expression returned here

EYET $97 Returned with 0 if zero page value, one otherwise

LOCC $99 Location counter.Contains the current program counter address

CODE $9B Code counter. Contains the address of where the next byte of object code is to
be stored.

AFND $9F Returned with $FF if all symbols in address expression were defined

PRTR $A1 Set to true (1) if LST option is in effect, false (0) if NLS option in effect

CDSP $A2 Contains the number of bytes of object code output by this operation. Should
be set to zero if no code is output

PASS $BC Contains 0 if this is pass two, contains 1 if this is pass three (USR address at
$E029 is not called during pass one)

FNAME $2C0 Contain the filename of the current assembling file

CODSAV $2E0-$35F Output code buffer, each byte of output object code is output to this buffer by
successive calls to OUTC

Appendix E
ASCII Character Set

DEC HEX Symbol Key Meaning DEC HEX Symbol Key Meaning

000 000 NUL P (c,s) NULL 064 040 @ @ Commercial At

001 001 SOH A (c) Start of Heading 065 041 A A A

002 002 STX B (c) Start of Text 066 042 B B B

003 003 ETX C (c) End of Text 067 043 C C C

004 004 EOT D (c) End of Transmission 068 044 D D D

005 005 ENQ E (c) Enquiry 069 045 E E E

006 006 ACK F (c) Acknowledge 070 046 F F F

007 007 BRL G (c) BELL 071 047 G G G

008 008 BS H (c) Backspace 072 048 H H H

009 009 HT I (c) Horizontal Tab 073 049 I I I

010 00A LF J (c) Line Feed (New Line) 074 04A J J J

011 00B VT K (c) Vertical Tab 075 04B K K K

012 00C FF L (c) Form Feed (Top of form) 076 04C L L L

013 00D CR M (c) Carriage Return (Return) 077 04D M M M

014 00E SO N (c) Shift Out 078 04E N N N

015 00F SI O (c) Shift In 079 04F O O O

016 010 DLE P (c) Data Line Escape 080 050 P P P

017 011 DC1 Q (c) Device Control 1 081 051 Q Q Q

018 012 DC2 R (c) Device Control 2 082 052 R R R

019 013 DC3 S (c) Device Control 3 083 053 S S S

020 014 DC4 T (c) Device Control 4 084 054 T T T

021 015 NAK U (c) Negative Acknowledge 085 055 U U U

022 016 SYN V (c) Synchronous Idle 086 056 V V V

023 017 ETB W (c) End of Transmission Block 087 057 W W W

024 018 CAN X (c) Cancel 088 058 X X X

025 019 EM Y (c) End of Medium 089 059 Y Y Y

026 01A SUB Z (c) Substitute 090 05A Z Z Z

027 01B ESC K (c,s) Escape 091 05B [[Opening Bracket

028 01C FS L (c,s) File Separator 092 05C \ \ Reverse Slant

029 01D GS M (c,s) Group Separator 093 05D]] Closing Bracket

030 01E RS N (c,s) Record Separator 094 05E ^ ^ Up Arrow

031 01F US O (c,s) Unit Separator 095 05F _ _ Underline (back arrow)

032 020 SP Space Space (Blank) 096 060 ‘ ‘ Grave Accent

033 021 ! ! Exclamation Point 097 061 a a a

034 022 " " Quotation Mark (Double) 098 062 b b b

035 023 # # Number Sign 099 063 c c c

036 024 $ $ Dollar Sign 100 064 d d d

037 025 % % Percent Sign 101 065 e e e

038 026 & & Ampersand 102 066 f f f

c = Control key s = Shift key  

039 027 ‘ ‘ Apostrophe (Single) 103 067 g g g

040 028 ((Opening Parenthesis 104 068 h h h

041 029)) Closing Parenthesis 105 069 i i i

042 02A * * Asterisk 106 06A j j j

043 02B + + Plus 107 06B k k k

044 02C , , Comma 108 06C l l l

045 02D - - Hyphen (Minus) 109 06D m m m

046 02E . . Period (Decimal Point) 110 06E n n n

047 02F / / Slant 111 06F o o o

048 030 0 0 0 (Zero) 112 070 p p p

049 031 1 1 1 (One) 113 071 q q q

050 032 2 2 2 114 072 r r r

051 033 3 3 3 115 073 s s s

052 034 4 4 4 116 074 t t t

053 035 5 5 5 117 075 u u u

054 036 6 6 6 118 076 v v v

055 037 7 7 7 119 077 w w w

056 038 8 8 8 120 078 x x x

057 039 9 9 9 121 079 y y y

058 03A : : Colon 122 07A z z z

059 03B ; ; Semicolon 123 07B { { Opening Brace

060 03C < < Less Than 124 07C | | Vertical Line

061 03D = = Equal 125 07D } } Closing Brace

062 03E > > Greater Than 126 07E ~ ~ Overline (Tilde)

063 03F ? ? Question Mark 127 07F DELETE Delete (Rubout)

DEC HEX Symbol Key Meaning DEC HEX Symbol Key Meaning

Appendix F
Mnemonics

Opcode Description Opcode Description

ADC ADd with Carry JSR Jump to SubRoutine

AND AND Accumulator with LDA LoaD Accumulator

ASL Arithmetic Shift Left LDX LoaD index X

BCC Branch on Carry Clear (BLT) LDY LoaD index Y

BCS Branch on Carry Set (BGE) LSR Logical Shift Right

BEQ Branch on EQual NOP NO oPeration

BIT Bit Test ORA OR Accumulator with

BMI Branch on MInus PHA PusH Accumulator on stack

BNE Branch on Not Equal PHP PusH Processor status bits on stack

BPL Branch on PLus PLA PulL Accumulator from stack

BRK BReaK PLP PulL Processor status bits from stack

BVC Branch on oVerflow Clear ROL ROtate Left

BVS Branch on oVerflow Set ROR ROtate Right

CLC CLear Carry flag RTI ReTurn from Interrupt

CLD CLear Decimal mode RTS ReTurn from Subroutine

CLI CLear Interrupt disable flag SBC SuBtract from accumulator with Carry

CLV CLear oVerflow flag SEC SEt Carry flag

CMP CoMPare accumulator with SEI SEt Interrupt disable flag

CPX CoMPare X with STA STore Accumulator in memory

CPY CoMPare Y with STX STore index X in memory

DEC DECrement memory STY STore index Y in memory

DEX DECrement Index X TAX Transfer Accumulator to index X

DEY DECrement Index Y TAY Transfer Accumulator to index Y

EOR Exclusive OR accumulator with TSX Transfer Stack pointer to index X

INC INCrement memory TXA Transfer index X to Accumulator

INX INcrement index X TXS Transfer index X to Stack pointer

INY INcrement index Y TYA Transfer index Y to Accumulator

JMP JuMP to new location

